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We consider the problem of solving an equation of the type 
I% 

ah- - & = f (2, y, 2, q 

(where a is a constant and f is a given function) when the initial state is given and when 
the form of the surface bounding the region changes with time without losing its similar- 

ity characteristics. We show that by introducing new variables and a function we can 

reduce the above problem to that of solving an equation of the form 

where R = R(t) is a function defining the rate of displacement of the boundary surface, 
R” = d2 R I dt2, p is the spherical or polar radius, F is a known functionof time and co- 

ordinates and the boundary conditions for the function u are given at a surface similar 
_~ &L_ I__ __>._ ~_f.__ r-_ L_~_ .__..___. ._I_ -L-._ &L__ ..l__ r. to tne nounoary surrace 101 (i, DUE stauonary. ./ Ffl>? I, ITA ,. n 

we snow mar, wnen n = y lylr -r- 1~ L T r 
where M, N and P are any constants (in particular we may have R = Mt + N and 

R = 1/Mt + N), then the homogeneous equation for u (with f = 0) allows the separa- 
tion of variables in rectangular, cylindrical or spherical coordinates. This in particular 

will yield general solutions of the problems for a plate, a rectangular parallelepiped, a 
cylinder of finite length, a sphere or a spherical shell e. a. which may expand or contract. 
In the case when the form of R (t) differs from one shown above. the solution of the initial 
problem for u can be reduced to a relatively simple integral equation. 

1. Investigation of the problems of the type indicated above can be reduced to solving 
an equation of the form 

aAn = -$ + f (J, Y, 2, r) (1.1) 

where a is a constant and f(z, y, Z, t) is a given function of time and coordinates. 
with the initial state u It=,, = F (z, Y, z) 

given, and with the boundaries of the region varying with time. 

Such problems occur, as we know, in the theory of diffusion, heat conduction, mechan- 
ics of soil e. a. (see e. g. Cl]). 

We shall begin with a certain general transformation of (1.1). Let R = R(t) be any 
function of time, continuous and possessing continuous first and second derivatives. Repla- 
cing x, y. and z with new variables E = x 1 R, q = y / R and 5 = z / R, we 
obtain 

= R2f (EjR, yR, CR, t), R’ = + -. (1.2) 
Here the derivative au / dt is taken with ET TJ and 5 constant. Assuming that E, rl 

and % are certain rectangular coordinates and introducing the corresponding radius vec- 

tor p connecting the origin with the point E, q and 5, we can write (1.2) as follows : 
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~AE.~.c u + RR’ (P, grad 4 --RR2 $ = Raf (ER, qR, CR, t) (1.3) 
where the subscripts g, rl and 5 accompanying the Laplacian indicate that it is taken 

in these variables (in the following these subscripts will be omitted). 
I _a ̂ ._ ___. ..__I^__ .a _..‘rl- ̂ _ ̂ ^^__ JT-- ..^ l&L Lls LI”W repace w WlUI u acr;“ruull; L” 

u = qv (Vi 

q=R”j2 exp-fZR”@/4a, p”==~z+~z+ c2, (4.5) 

If the problem in question is three-dimensional, we should put n = 3, n = Z if 
the problem is two-dimensional and n = i if it is one-dimensional (plane), It can 

easily be shown that (1.2) or (1.3) in this case becomes 

If in addition we introduce a new “time” variable t defined by 

z -_1 ’ db 
\ “Jo (1.7) 

then (1.6) becomes 
EPB’ ahv-$-+++=~ (1.8) 

which differs from the original equation only in the fact that the term ‘Id R3R”“p2v / a 
appears in its left side (of course one of them is written in the 3, y, z, t -variables, and 

the other in g, n, c, r ) . The initial condition ujtzu 1= F(z, y, z) is transformed 
using (1.4) and (1.5) into corres~nding initial condition 

*. ,c _ _ “_\ > 

V 
I 

_c ff Kfi* rl’-r* Wl = 

s=+, I 

= [R (0)]“an exp R “‘4: (‘I p$ P IER ;f yR (0), OR (0)] 

Z,--Z I#_) 

When R”” = 0, i.e. when 
R =&&+l? (1.9) 

where A and B dre constants, the differences between the form of (1.1) and (1.8) disap- 
pear and they differ only in the right sides which are known for both equations ( * ) . 
From this it follows, in particular, that if a solution is sought of the equation 

(1 :lO) 

for some region whose shape does not change with time and where the initial state of the 
system is known and arbitrary (depending on the time and coordinates) values are assigned 
to the function P, then an analogous problem can be solved for (1.1) for a region of the 
same shape, but expanding or contracting uniformly with time and preserving similarity. 

l ) For a homogeneous equation a A u = du I at we obtain at once a well known theorem 
stating that if the function u = cp (z, Y, 2, t) is its solution, so is 

U = t-n&p 
i 
- 
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This follows directly from the correspondence shown above of the equations and initial 
conditions for both problems and from tile fact,that to each point r,q”, 6” of the bound- 
ary (stationary) of the region for the function ?I , there corresponds a point on the bound- 

ary whose coordinates are 

x0 = YR=E” (At+B), y”= q=‘(At+B), 2= 5” (At+ B) 

in the problem for U. In particular, in all the cases when the indicated boundary value 

problem for u is solved in those coordinate systems in which the homogeneous equation 

aAw--_aw/aT= 0 (1.11) 

corresponding to (1.10) allows the separation of variables (i. e. in the rectangular, cylin- 
drical and spherical systems), the method yields directly a solution in known functions, 
of the corresponding problems for a uniformly expanding or contracting regions such as 

an infinite plate of constant thickness, a rectangular parallelepiped, a cylinder of finite 

length, a sphere or a spherical shell, etc. 
This is the solution for the case when R = At + B. A more general case ( * ) when 

R3R” = const = - a # 0 
is of iiartic-~iar interest. were equations (:. Sj “uecomes 

aAv-- R2$ -&zu = !$c (1.12) 

The corresponding homogeneous equation is 

aAtc-R2$ -&Pw= 0 (1.13j 

and we can easily see that the separation of variables is possible in the rectangular, 
cylindrical and spherical coordinates. By virtue of this fact, all problems which admit 
such a solution for Eq. (1.10) in the above coordinates (in particular for a plate of uni- 

form thickness, a cylinder of finite length, a sphere or a spherical shell, etc.) with sta- 
tionary boundaries, can also be solved for (1.12). 

This in turn implies that the corresponding boundary value problem’ for (1.1) can be 

solved completely for regions of the same shape, expanding or contracting according 
to a law which ensures that each point p, q”, 5” of the stationary boundary surface 
in the problem for v has a corresponding point x0 = FR, y” -= -q”R, z” = PR 
in the original problem for u. Here R satisfies the equation R3R”” = - Q and is 
given, in the general case, by 

R=~(At+B)2-~/A2 (1.14) 
where A, B and a are arbitrary constants. As we said before, R = At -j- B and 
R = VrN where ikf and N are different constants, represent particular cases of 

the above formula. The initial state of the system,i. e. the function u ItEo = F(z, y, z) 

and the values of u (dependent on time and the coordinates of the relevant point on the 
surface) on the boundary surface moving according to one of the laws defined by (1.14), 
can be assigned arbitrarily. 

2, We shall now consider in more detail the functions entering (1.13) during the sepa- 
ration of variables in the rectangular,cylindrical or spherical coordinates. We shall deal 

l ) R = v/At + R, a = Vr Aa represents such a case. Obviously R = At + B corre- 
sponds to a = O. 
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with the last two cases first, assuming for simplicity the radial or spherical symmetry . 

Equation (1.13) then becomes 

*+ P$ ( > -$yW=R2$ (n = 1, 2) (2.1) 

where the values n = 1 and n = 2 refer to the cylindrical and spherical symmetry 
respectively. Assuming that 

we find 
(2.2) 

(2.3) 

(2.4) 
where p is an arbitrary parameter appearing during the separation of varjables. It can 

easily be shown that the same equations with IZ = 0 result, when the variable separation 

is performed on (1.13) in the rectangular coordinate system (not only in the one-dimen- 

sional, but also in general, three-dimensional case). Assuming therefore in the following 

that n can assume the values of zero,one and two, we can include the case of rectangular 

coordinates in our discussion. 
Let us now consider (2.3). When a = 0 , its solution is well known and can be written 

in terms of trigonometric or Bessel functions [2]. When a # 0 , introduction in (2.3) of 
another variable 0 = pz yields @rl’h , n I 1 tlh 

2as 
cl02 + 

-ll(l.j-E&LO 
2 (2.5) 

Putting fi = __ and h =e-‘jrs cp we find 
V/a 

s;$ -t 
C 

II +- 1 @ ?1 _t 1 s -__.y _- --p 
2 1 ( , ris 4 8a 1/x ) 

cp=o (2.6) 

which is the equation of the degenerate hy_pergeometric function F(v X.7 6? s) whose 

parameters are TX; nfl-- 
( > 

n+l 
21 I’< 

) 6=T. 

Thus we see that in the present case the particular solutions h(p) are expressed in 

terms of known and extensively tabulated functions, and the same applies to solutions of 
boundary value problems. 

3. When the form of R differs from that given by (1.14) and the product R3R’” is 
not constant, solutions of the above boundary value problems for (1.1) can be reduced to 
relatively simple integral equations for the corresponding functions of U. To do this, we 
shall assume that the third term in the left side of (1.8) is known, transfer it to the right 

side of the equation and express the values of u inside the region in terms of its bound- 

ary values (obtained from the boundary values of u given by (1.4) and (1.5) ) and of the 
right side, using the Green functions. This gives the required integral equations. 

4, We shall, in addition, mention the case when K = @tit -k N where M and N 
are constants. Here R3R” = - (‘/&1)2= const, therefore this corresponds to the 

case already discussed. Since we also have RR” = ‘12fif= COW-A, the problem sim- 
plifies because the variables can now be separated in Eq, (1.3) (more exactly, in the equa- 
tion obtained from (1.3) for f = 0) and there is no need to pass from u to D. Obvious- 

ly, when R varies with time according to such a law,the boundary value problem for the 
original equation( 1.1) can be solved for the second order conditions, when only the nor- 
mal derivative of u is given at the moving boundary. Solution is also possible for cer- 

tain, more complicated (combined)formulations of tlhe boundary conditions. 
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system (which is in a sense a generalization of Liapunov systems) is investigated. The 
existence of a periodic solution is due to the existence of the necessary number of first 
integrals. Formulas for approximate calculation of the period are derived for cases where 
such a solution can be said to exist. The results can be applied to the study of periodic 
solutions of systems close to that analyzed here under principal-resonance conditions 

(in the sense of Malkin). 

1, Formulation of the problem, We consider the system 

dxi / dt = ailxl + . . . + a,$,, + & (519 . . . , xn) (i = 1, . . . , n) (1 .I) 
where aijare constants and Xi are analytic nonlinear functions of the variablesrr,, . . , 5,. 

Let us assume that Eq. 
1 czij - 6ijp 1 = 0 (1 .ay 

has 2 zero roots associated with l groups of solutions, two roots f hl/- 1 , and no -- 
roots which are multiples of f “I/ -1. 

Applying a linear nonsingular transformation with constant coefficients, we transform 

system (1.1) into [l and 21 

duj [ dt = Uj, dy / dt = - AZ + Y, dz / dt = hy + Z 

dq / dt = bilvl + . ..+ big,,, + Vi (1.3) 
(j=i ,..., I; i=l,..., m, n~+L+2=n) 

where UI! Yt Z7 Vi are analytic nonlinear functions of the variables ur:,. .: Ui: y: z: 
2’1, . . . ) v~, and where the constants bij are such that there are no zero roots or multiples 
of t hv--- 1 among the roots of the equation 1 bij - &jpl= 0 . 

Let us assume that system (1.3) has I + 1 analytic first integrals 

1Mj (u) + Mj(l) (U, y, z, U) = cj (j= 1, . . . , 1) (1.4) 

YZ + zz 4 S(w y, z, v) = CiSl (1.5) 
where &lj are linear independent forms of the variables ur, . . . , ui; d!‘lj(i), I) are 


